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ABSTRACT

We show that the problem of computing source-sink reliability is

NP-hard, in fact #P-complete, even for undirected and acyclic directed

source-sink planar graphs having vertex degree at most three. Thus the

source-sink reliability problem is unlikely to have an efficient algorithm,

even when the graph can be laid out on a rectilinear grid.
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1. Introduction

Connectedness reliability problems on graphs have long constituted a

class of computationally intractable problems. Virtually all such problems

have been shown to be NP-hard (actually #P-complete) for general graphs [2],

[10), [11), [16). Work has therefore concentrated on finding significant

special classes of graphs for which polynomial algorithms do exist for

computing network reliability. This has culminated in methods for computing

fairly general reliability measures in directed and undirected series-

parallel graphs [1), [13). There are three important classes of graphs for

which complexity results have not been obtained, namely, planar graphs,

acyclic graphs, and graphs which have bounded vertex degree. There is,

moreover, compelling evidence to suggest that reliability problems for these

graphs might be computationally easier than for general graphs (see [3],

[7], [9], [10], [14]). We show in this paper, however, that the problem of

computing sourcensink reliability is #P-complete, even for undirected and

acyclic directed source sink planar graphs having vertex degree at most

three.

2. Preliminaries

Let G - (V,E) be a graph (directed or undirected) with vertex set V

of cardinality m and edge set E of cardinality n . The degree of a

vertex is the number of edges adjacent to that vertex. Two vertices s and

t are distinguished as the source and sink vertices, respectively. The

graph G is called source-sink planar, or simply (s,t)-planar, if It has a

planar representation with s and t on the boundary. Now suppose edges

in G fall independently, each edge failing with the same probability p

OSp<1. For the purposes of this paper, we take p to be rational. Then



-2-

the (s,t)-connectedness reliability of G , R(G,s,t;p) , is the probability

that there is at least one path of operating edges from s to t , where

the path is taken to be directed when G is directed. This probability can

be written as

R(G,s,t;p) - p H I(1 p)n~I H I
HefH

where H Is the collection of sets of edges which contain at least one

(s,t)rpath. The problem of computing R(G,s,t;p) has been shown to be

#P-complete for undirected graphs by Valiant [16], and for directed acyclic

graphs in [10]. In neither case, however, are the networks planar, nor are

the vertex degrees bounded. The two problems considered in this paper are

P3ST: The problem of computing R(G,s,t;p) when G is an undirected

(s,t)-planar graph with each vertex having degree at most three;

PA3ST: The problem of computing R(G,s,t;p) when G is an acyclic

directed (s,t)-planar graph with each vertex having degree at most

three.

It is at present unknown whether there exists a polynomial algorithm to

solve either of these problems.

We explore the complexity of the problems P38T and PA3ST in the

manner proposed by Valiant [16]. We assume that the reader is familiar with

the notions of NP and NP-complete problems; see [4] for an excellent account

of these concepts and their relationship to #P-completeness. Fix input

alphabet E and denote by E* the corresponding collection of (finite)

*.~ * * * * * * * * J *. . . . . . . . . . . .'- .-
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strings. We assume £Z contains a representation of Z+ -to,',.•-

Define the class #P to consist of those functions f:E*4Z+ which can be

* computed by counting the number of accepting computations of some nondeter-

ministic Turing machine of polynomial time complexity. For function f:Z*Z,-

define a f-oracle Turing machine to be a Turing machine, together with an

additional input and output tape, which at any time during a computation can

write string a on the input tape and in one step receive f(o) on the output

tape. A function g:E*+Z+ is polynomially reducible to f (gaf) if there

exists a polynomial time complexity f-oracle Turing machine which computes g

A function f is called #P-complete if (a) f is in #P and (b) every

function g in #P is polynomially reducible to f

Roughly speaking, the #P-complete problems are those which are poly-

nomially equivalent to the counting problems associated with many

NP-complete problems - for example, counting the number of Hamiltonian

circuits in a graph. They are therefore at least as hard as NP-complete

problems, and so it is unlikely that a polynomial algorithm exists to solve

these problems. It should be noted that P3ST and P3AST are technically

not #P problems, since, among other things they compute rational numbers

rather then integers. However, it will follow from subsequent discussion

(specifically Corollary 1) that in both P3ST and PA3ST the problem of

* computing R can be reduced to that of computing 2nR(G,s,t;1/2) 1 I j-

the number of sets of edges which admit a path from s to t . This

function is clearly in #P , since such edge sets are easily recognizable.

We will show that both P3ST and PA3ST are #P-complete problems.

This result is somewhat surprizing, since several #P-complete enumeration

problems associated with (s,t)-connectness i.e., the number of (s,t)%paths

:*:.:*.*.•*.C*.... . ... C
* ~ *%~C .. ~../ Ci.* %~.*.C ~ .. . . . . . . . . .~~.*',*-.**..,-**



of any given length and the number of minimum cardinality (s,t)-cuts --

become polynomially computable when restricted to planar graphs (in the case

of minimum cuts) or acyclic graphs (in the case of paths) [3]. The

planarity and bounded vertex degree in P3ST and PA3ST also mean that the

problem of computing R(G,s,t;p) is #P-complete even when G can be

embedded in a rectangular grid with a and t on the perimeter (see [5"

Theorem 1 for details).

As a starting point for the results in this paper, we present two known

#P-complete functional evaluation problems.

I. Number of Hamiltonian circuits in a planar cubic graph (#HCPC)

Given: planar undirected graph with each vertex of degree three;

Find: the number of closed simple paths going through every

vertex of G

II. Acyclic (s,t)-connectedness reliability (AST)

Given: acyclic graph G , source s , sink t , and rational

probability p -

Find: R(G,s,t;p)

As with P3ST and PA3ST , one can think of AST as computing

2nR(Gst;1/2)- IH I so as to make it a member of #P .The problem AST

was shown to be #P-complete in [10]. The problem #HCPC has essentially

been shown to be #P-complete in [6]. Specifically, in the construction for

the m clause, 3-conjunctive normal form expression F in that paper, if

the "required-4edge" graph is placed into the successive figures as oriented,

then the resulting graph has exactly (87.18)m.86a.8b.36 Hamiltonian

. .. .. . .. .. . . . .



-5-

circuits for each assignment satisfying F , where a is the number of

"crossing exculsivemor" graphs and b is the number of "noncrossing

exclusive-or" graphs added in the final construction. Since the number of

satisfying assignments for a 3-conjunctive normal form expression is known

to be #P-icomplete [15], then #HCPC is also OP-'omplete.

We next present a key formula used to prove both of the main results of

this paper. It is due to Satyanarayana and Prabhakar ([12), Equation (3),

with a correct proof in [17)), and is restated here as it applies to P3ST

and PA3ST. For directed graph G and specified vertices s and t

define an (s,t)-subgraph of G to be an acyclic subgraph H of G having

the property that every edge of H lies in at least one path in H from s

to t . Equivalently, an (s,t)-subgraph can be characterized as an acyclic

subgraph H such that s is the only vertex with no edges of H pointing

into it and t is the only vertex with no edges of H pointing out of it.

Satyanarayana and Prabhakar showed that the (s,t)-connectedness reliability .

for G can be written

J-i,1 j 1R(G,s,t;p) - I 1 (-1) p
i~j HCH~t, ij.-.-

where Hij is the set of (s,t)-subgraphs H with i vertices and j

edges. This formula can be applied as well when G is undirected. To do

this, we first construct directed graph G' by replacing each undirected

edge of G by two oppositely directed edges, each with probability p

Then, as proved in [2] Theorem 2, R(G',s,t;p) is equal to R(G,s,t;p)

The (s,t)-subgraphs of G now correspond to acyclic orientations of

undirected subgraphs of G for which every edge is in at least one

(s,t)-path, so that an (s,t)ssubgraph for an undirected graph will always

* .. ,•.. -



refer to the corresponding oriented subgraph. With this modification,

Equation (1) holds also when G is undirected. .

Finally, we present three general lemmas. The first is due to Valiant

([16), Fact 5). Define the size of a rational number r to be the total

number of (binary) digits in the numerator and denominator, when r is

presented as a fraction in lowest terms.

Lemma 1: If g(x) is an nth degree polynomial with rational coefficients

and its value is known at each of the distinct rational points xl,...,Xxn+.

each of size at most d , then the coefficients of g can be deduced in

time polynomial in n , d , and the maximum size of the values of g(xi ). a

To give the second lemma, we need some additional notation. Let G

s , t , and p be given, and let S be a subset of edges of G . For -

1.0,...,l S I define

R (G,s,t,S;p) I ( 1 )Jii+Ipj
ij HcH2 Z

where is the set of (s,t)-subgraphs of G with i vertices, J edges
ij

of E-S ,and I edges of S.

Lemma 2: R R , even when restricted to graphs which are (s,t)-planar,

acyclic, or with vertex degree at most three. I

Proof: Let the arguments G , s , t , S and p be given, with m the

number of vertices of G , n the number of edges of G , k the 0

L .
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cardinality of S , and d the size of p . For r-O,...,k construct the

graph Gr by replacing each edge e-(u,v) of S by the path of r+1

edges (u,ue,),(ue,1,Ue,2)...,(Ue,r,v) ,where ue,1,....Ue,r are new

vertices. This graph has m+kr vertices and n+k(r+1) edges, and is

planar, acyolic, or with vertex degree at most three, respectively, if G

Is. Further, an (s,t)asubgraph In Gr  corresponds to an (s,t)&subgraph of

G with each (oriented) edge of S replaced by the appropriate (oriented)

path. Equation (1) now becomes
k%

R(G's'~p)J+9.(r+l)-(i+9.r)+l pJ+L9(r+l)

1.0 i~j HCtfij

k
X (_pr+1I) R (G,s,t,S;p)

"£0

This Is a polynomial in _pr+1 The coefficients R (G,s,t,S;p) consist of

sums of at most 2 2n terms (an upper bound on the number of (oriented)

(s,t)-subgraphs of G ) with size at most nd , so that the size of

R (G,s,t,S;p) is bounded by n(d+2) . Similarly, the size of each

R(Gr,s,t;p) is bounded by (n+k(r+l))(d+2) . Using Lemma 1 we can compute

the k+1 coefficients R (G,s,t,S;p) , -0,...,k, from the k 1 values

R(Gr,s,t;p), r=O,...,k, in time polynomial m , n , and d This proves the

lemma. a

Note that the reduction in Lemma 1 can be performed when p is fixed

at any value other than 0 or 1 , specifically for p = 1/2

Furthermore, if we consider the case when S = , then for - 0,...,n we

have

A o ,



R (G,s,tE;P) 1 ()1

where H iois the set of (s,t)-subgraphs of G with i vertices and 9

edges, i.e. HI Hit But now we can write10 i

RCGs,t;p) - (-ip) R (Gs,t,E;p)

From the above discussion we obtain the following corollary.

Corollary 1: R aR(*;pn1/2) ,even when restricted to graphs which are

(s,t)Aplanar, acyclic, or with vertex degree at most three.

As stated when defining P3ST, PA3ST, and OST, then, there is no loss of

generality in considering the #P-problem of computing J rather than the

reliability problem of computing R

Lemma 2 provides a second useful corollary. Let G ,s ,t ,and S be

as in Lemma 2, and for -0..IS k=O,...,l E-S1 define

R (G,s,t.S) (2)1 -1

HEik

where H ikis as defined for R .By applying Lemma 2 twice, once to S and

once to E-S ,we have the following result:
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Corollary 2: R R , even when restricted to graphs which are (s,t)-planar,

acyclic, or with vertex degree at most three. o

Again, the restriction to p 1 1/2 provides no loss of generality.

3. f-complete results

We first prove the result for the undirected case.

Theorem 1: P3ST is #P-complete, in particular, #HCPC P3ST

Proof: Let G-(V,E) be a planar undirected cubic graph with m vertices

and n edges. Choose any edge (u,v), and form the graph G'-(V',E') by

replacing (u,v) by the two edges (s,u) and (v,t), where s and t are

new vertices. The graph G' is clearly (s,t)-planar. Now form the graph

G"-(V",E") by replacing each (degree 3) vertex except s and t with a

triangle as shown in Figure 1. Then IV" I-3m+2 and IE" -n+3m+l , and each

edge of E' can be identified with the appropriate edge of E" . Let S

be the set of edges of E" associated with E' so that T-E"l-S is the set

of triangle edges. By applying Corollary 2, we conclude that the function

R m( ' ,s,t,S) - (-1)

i-J HC14 (ks)

... *
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--where Hm 1  Is the set of all oriented (s,t)-subgraphs of G" with i

vertices, m+1 edges S and m edges of T --is polynomially reducible

*i to P3ST Now for any H in H m+1 consider the oriented subgraph H'• ~~i ,m ';i -

of G' corresponding to the m+1 edges of H in S These must comprise

an (s,t)-subgraph of G' , which means that each vertex In H' except s

and t must have degree either 2 or 3. Let Vi be the set of vertices of

H' of degree i, i-2,3 Again, since H is an (s,t)-subgraph then

corresponding to each vertex in V2 there must be at least one edge of TnH

and corresponding to each vertex in V3 there must be at least two edges of

TnH Let k be the total number of edges of TnH corresponding to

vertices in V3 , so that m-sk is the total number of edges of TnH cor-

responding to vertices in V2  By summing the degrees of vertices in H',

* _we have

2(m+I) 2 v2  + 31 v3 I+ 2

S 2(m-k) + 3k/2 2

= 2(m+1) - k/2

implying that k - 0 . This means that H' must be a Hamiltonian path in

G , and that H is obtained from H' by adding the unique set of m edges

of T connecting the appropriate edges of SnH at each vertex. Thus each

H has exactly 2m+2 vertices and corresponds in one-'to-one fashion with

the Hamiltonian paths from s to t in G . It follows that



2M+2 , .

and we therefore obtain the number of Hamiltonian paths from s to t in

G' , which corresponds to the number of Hamiltonian circuits in G

containing the edge (u,v) In a similar manner, we can obtain the number

of Hamiltonian circuits containing each of the other two edges of G

adjacent to v , and the sum of these three values is exactly twice the

number of Hamiltonian circuits in G . This completes the proof of the

theorem. a

To prove that PA3ST is #P-complete, we provide an intermediate

reduction. Define a directed (s,t)-planar graph G to be contiguously-

directed if it has a planar presentation for which each vertex v has its

adjacent edges arranged so that in a clockwise sweep around v the edges

into v and the edges out of v lie in two unbroken sequences. Define the

problem PCAST to be that of computing R(G,s,t;p) in an (st)-planar

contiguously directed acyclic graph. We note that Lemma 2 and its

corollaries can easily be seen to include the restriction to contiguously

-" directed graphs.

Theorem 2: AST £ PCAST

-" Proof: Suppose we are given acyclic directed graph G - (VE) with m

vertices, n edges, source s , and sink t . Since G is acyclic, it

,, follows that we can number the vertices of G v1,...,vm such that

,* * * *o . *... *.. -.

U * . * * * C C *-
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(vjvj)cE if and only if i<J . We can therefore place the vertices of G

in the plane, representing the edges as straight lines, in such a way that

each vertex vi  has x-coordinate i, i-1,..•,m, no three edges cross at --

the same point, and no edge crosses a non-adjacent vertex. Further, this

construction can be done in polynomial time. This realization of G has

the properties that no simple path can cross itself in the realization, and

that the number of edge crossings is c~n2 . Now construct the graph

= ( ,E) by successively replacing each pair of crossing edges in

G by the planar subgraph shown in Figure 2. We define the set S to

comprise the collection of double-lined edges as shown in the figure and we

set T = E-S . Then G is planar with m+6c vertices, 6c edges in S

and n+3c edges in T Further, with the given realization of G it

follows that U remains acyclic, and that U is contiguously

directed since all edges come into a vertex from the left and leave to the

right.

Now for I,.,6c, ku1,...,n+3c , define R~k as in Equation (2): R -

Lkm L-1-
Rtk(G,s,t,S) I 1 (-1) 'i

i-O HcH~k

where P is the number of (s,t)-subgraphs of 0 with i vertices, t
ik

edges of 3 and k edges of T . It follows from Corollary 2 that 1--

Rk(G,s,t,S) is reducible to R with R restricted to

(s,t)-planar contiguously directed acyclic graphs. The theorem --.

is an immediate consequence of Corollary 2 and the following claim.

ft f. - - t . . . ft-.
••- f.. , ... . . . . . . . . f... . . . f t f t
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*t+k Ek -k-1
Claim: R(G,s,t;1/2) - . (-I) R (G,s,t,S)(1/2) "  (3)

1,k

Proof of claim: We first rewrite (3) as

R(G,s,t;1/2) = X Z (-I) +k-+(1/2)k- (4)
1,lk H cR k

1k

We prove the claim by Induction on the number r of replacements of the

type shown in Figure 2. The case r = 0 follows from Equation (1). Now

suppose that (4) holds after r replacements with G the resulting graph.

Suppose we replace the pair (uv), (w,z) of crossing edges by the appro-t

priate subgraph F to form graph G' . Consider an (s,t)-subgraph H' of

G' . This subgraph falls into one of 10 classes, depending on which of the

four edges of F adjacent to u , v , w , and z appear in H'. By

symmetry we need to consider only five classes, namely class 1--in which

none of these four edges appears---or one of the four classes shown in Figure

3. For each class, consider the possible configurations of internal edges

of F which could form an (s,t)-subgraph with the given outside edges. By

summing (- 1 )('k '-i'1(1/ 2 )k'' over all configurations in a class--

where i' , k', and ' are, respectively, the number of vertices, number

of edges of S , and number of edges of T appearing in the configuration

(including outside edges and vertices)--we get:

(I) the sum over all configurations in class 2 and 3 is 0;

(ii) the sum over all configurations In class 4I is 1/2;

(iii) the sum over all configurations in class 5 is -1/-.

Now consider an (s,t)-subgraph H in U . Then H falls into one of four

classes, depending on which subset of the edges (u,v) and (w,z) appear

* .*~ **.. ~ *, : ~ ~ .. * -.- :a . *~~**. . . .
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in H. If H contains neither (u,v) nor (wz) then H corresponds to

exactly one subgraph of G, , which is in class 1; if H contains

exactly one of the two edges, say (u,v), then H corresponds to the class

of (s,t)-subgraphs of G' comprised of the edges H-F along with the set

of class 4 configurations of F; and if H contains both of the edges

(u,v) and (wz), then H corresponds to the class of (s,t)-subgraphs of

G' comprised of the edges H-F along with the set of class 5 configurations

of F In each case, the net contribution to (4) of configurations in

classes 1 , 4 , and 5 is exactly equal to contribution of the edges (uv)

and (w,z), and the net contribution of configurations in classes 2 and 3 is

zero. It follows that (4) continues-to hold for the graph U', and the

claim follows by induction. This completes the proof of the theorem.

We can now present the result for the directed case.

Theorem 3: PA3ST is #P-complete, In particular PCAST - PA3ST.

Proof: Let G - (V,E) be an (s,t)-planar acyclic contiguously directed

graph with m vertices and n edges. For each vertex v , let

(u1(v),v),(u2(v),v),. .. ,(uZ(v) ,v ) v)+ k(v)

be the edges adjacent to v , listed in clockwise order. Now define the

directed graph G' - (V',E') with vertex set

v9 - Iwl(v),...,Wk(v)(V) • vcV}

- .: ... .. .1: * , . . . ... ,. .. .. ..- .. - .. - .: ....... ....... ...... ... .:.. . ** % • ... ..... ..- ... .. . .. :'.:



* and edge set E' SuT with

S - 1(wl(v),w2(v)),...,(wk(v)..(v),wk(v)l(v)) vcVj

T - f(wi(u),wj~v)) :(u,v)cE with u-uj(v) and v--uj(u)1

The edges can be positioned as shown in Figure 4.* Finally, set s' - w1(s)

* and t' - wk(t)(t). It is clear that G' Is (s',t')-planar and acyclic,

that it has at most three edges adjacent to each vertex, and that

VI 2n, S 3 2n-m, and T I-n. Further, there is a one-'to-,one corres-

pondence between the (s,t)-subgraphs of G and the (a' ,t' )-subgraphs of

G',* obtained by associating with each Cs,t)"4subgraph H of G the

subgraph H' of G' with edge set AuB where

*A - (wi(u),wj(v)):(u,v)cH with u-ui(v), v-uj(u)lc T

*B -f(w i(v),wiJ+fv)),(vi, (v),w +(v))e i.(w .. (v),W (V)): VEH,

1 v-s k(v) V-t

Sminfp:(u (v),v)eHI yes maxfp:(v,u (v))cH} vet
p P

- so that H' has exactly B I more vertices than H *From Lemma 2

we get that Rt(G'.s',t',S;p) Is polynomially reducible to R *with R

*restricted to (s,t)-planar, acyclic graphs with vertex degree at most 3. But now
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J-i+1 .1
R(G,s,t;p)- X 1 (-1)- p

ij HcHi

i,

and the theorem follows.

4. Conclusion

We have shown in this paper that planarity, acyclicness, and bounded

vertex degree, even taken together, are not sufficient to keep the problem

of computing (s,t)-connectedness reliability from being NP-hard. This is

true even though several counting properties associated with

(s,t)-connectedness reliability become polynomial when restricted to these

classes of graphs. A second important connectedness reliability problem for

which the same type of analysis could be performed is the source-toall, or

connectedness, reliability problem. This is the problem of computing for a

graph G -- under the same edge failure distribution used in this paper

the probability that a given source vertex can reach all other vertices of

G through paths of operating edges. For this measure, the acyclic property

alone is sufficient to construct a polynomial evaluation algorithm (see £3-

Theorem 4(v)). Whether planarity alone is sufficient remains an open

problem, although again several related NPmhard problems can be solved In

polynomial time on planar graphs (see £3) Theorem 4(iv), [10], and [9)

Corollary 2.7 and succeeding discussion). Further, the class of planar

,- .-' .'-. _ *

*.! . . *... . . . . . . . a .. * * ~ . . . .. . .. -.... S *. -. * . . .a w . ...



graphs for which this reliability *an be computed efficiently has been

extended slightly from serles-4parallel graphs to Include "InnerAfofurs-Cycle-

Preen graphs E8). The problem for planar graphs with bounded vertex degree

also remains open.

S7
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